multivariate estimate - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

multivariate estimate - перевод на русский

SIMULTANEOUS OBSERVATION AND ANALYSIS OF MORE THAN ONE OUTCOME VARIABLE
Multivariable analysis; Multivariate analysis; Multivariate Analysis; Multivariate analyses; Multivariate data analysis; Statistics/Multivariate; Multivariate methods; Multivariate data; Multivariate datasets
Найдено результатов: 176
multivariate estimate      

математика

многомерная оценка

multinormal         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

общая лексика

мультинормальный

Смотрите также

cumulative throughflow; fractional throughflow

bivariate normal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

статистика

двумерное нормальное распределение

multinormal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

математика

многомерное нормальное распределение

bivariate normal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector
двумерное нормальное распределение
multivariate normal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

общая лексика

многомерное нормальное распределение

multidimensional distribution         
PROBABILITY DISTRIBUTION OF MORE THAN ONE RANDOM VARIABLE
Joint probability; Multidimensional distribution; Multidimensional probability distribution; Bivariate distribution; Multi-dimensional distribution; Joint function; Joint distribution; Joint probabilities; Joint distributions; Multivariate distribution; Bivariate frequency distribution; Joint distribution function; Multivariate probability distribution; Joint probability mass function; Jointly distributed

общая лексика

многомерное распределение

multivariate data         

общая лексика

многомерные данные

multivariate         
WIKIMEDIA DISAMBIGUATION PAGE
Multivariate (disambiguation); Trivariate

общая лексика

многомерный (напр. об анализе, о системе)

научный термин

множественный

joint distribution         
PROBABILITY DISTRIBUTION OF MORE THAN ONE RANDOM VARIABLE
Joint probability; Multidimensional distribution; Multidimensional probability distribution; Bivariate distribution; Multi-dimensional distribution; Joint function; Joint distribution; Joint probabilities; Joint distributions; Multivariate distribution; Bivariate frequency distribution; Joint distribution function; Multivariate probability distribution; Joint probability mass function; Jointly distributed

общая лексика

совместное распределение

Определение

multivariate
[?m?lt?'v?:r??t]
¦ adjective Statistics involving two or more variable quantities.

Википедия

Multivariate statistics

Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to each other. The practical application of multivariate statistics to a particular problem may involve several types of univariate and multivariate analyses in order to understand the relationships between variables and their relevance to the problem being studied.

In addition, multivariate statistics is concerned with multivariate probability distributions, in terms of both

  • how these can be used to represent the distributions of observed data;
  • how they can be used as part of statistical inference, particularly where several different quantities are of interest to the same analysis.

Certain types of problems involving multivariate data, for example simple linear regression and multiple regression, are not usually considered to be special cases of multivariate statistics because the analysis is dealt with by considering the (univariate) conditional distribution of a single outcome variable given the other variables.

Как переводится multivariate estimate на Русский язык